Pion and photon beam initiated backward charmonium or lepton pair production

Author:

Pire Bernard,Semenov-Tian-Shansky Kirill M.ORCID,Shaikhutdinova Alisa A.,Szymanowski Lech

Abstract

AbstractHard exclusive reactions initiated by pion or photon beams within the near-backward kinematical regime specified by the small Mandelstam variable $$-u$$ - u can be studied to access pion-to-nucleon and photon-to-nucleon transition distribution amplitudes (TDAs). Checking the validity of collinear factorized description of pion and photon induced reactions in terms of TDAs allows to test the universality of TDAs between the space-like and time-like regimes that is the indispensable feature of the QCD collinear factorization approach.In this short review, we consider the exclusive pion- and photo-production off nucleon of a highly virtual lepton pair (or heavy quarkonium) in the near-backward region. We first employ a simplistic cross channel nucleon exchange model of pion-to-nucleon TDAs to estimate the magnitude of the corresponding cross sections for the kinematical conditions of J-PARC. We then illustrate the flexibility of our approach by building a two parameter model for the photon-to-nucleon TDAs based on recent results for near threshold $$J/\psi$$ J / ψ photoproduction at JLab and provide our estimates for near-backward $$J/\psi$$ J / ψ photoproduction and timelike Compton scattering cross sections for the kinematical conditions of JLab and of future EIC and EIcC.

Funder

Foundation for the Advancement of Theoretical Physics and Mathematics

HORIZON EUROPE Framework Programme

National Research Foundation of Korea

National Science Center in Poland

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3