A likely increase in fine particulate matter and premature mortality under future climate change

Author:

Park S.ORCID,Allen R. J.,Lim C. H.

Abstract

AbstractClimate change modulates the concentration of fine particulate matter (PM2.5) via modifying atmospheric circulation, temperature, and the hydrological cycle. Furthermore, PM2.5 is associated with cardiopulmonary diseases and premature mortality. Here, we use seven models to assess the response of PM2.5 to end of the twenty-first century climate change under Representative Concentration Pathway 8.5, and the corresponding impact on premature mortality. The majority of models yield an increase in both PM2.5 and premature mortality associated with lung cancer and cardiopulmonary disease in all world regions except Africa. These results are robust across five different future population projections, although the magnitude of premature deaths can vary by up to a factor of two. Much larger uncertainty is related to uncertainty in model physics and the representation of aerosol processes. Although our analysis requires several assumptions related to future population estimates, as well as the concentration-response function, results suggest that future emission reductions are necessary to avoid the likely health risks associated with increasing PM2.5 in a warmer world.

Funder

Division of Earth Sciences

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Atmospheric Science,Pollution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3