Abstract
Abstract
We discuss inflation and dark matter in the inert doublet model coupled non-minimally to gravity where the inert doublet is the inflaton and the neutral scalar part of the doublet is the dark matter candidate. We calculate the various inflationary parameters like n
s
, r and P
s
and then proceed to the reheating phase where the inflaton decays into the Higgs and other gauge bosons which are non-relativistic owing to high effective masses. These bosons further decay or annihilate to give relativistic fermions which are finally responsible for reheating the universe. At the end of the reheating phase, the inert doublet which was the inflaton enters into thermal equilibrium with the rest of the plasma and its neutral component later freezes out as cold dark matter with a mass of about 2 TeV.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference45 articles.
1. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems, Phys. Rev. D 23 (1981) 347 [INSPIRE].
2. Planck collaboration, P.A.R. Ade et al., Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys. 594 (2016) A20 [arXiv:1502.02114] [INSPIRE].
3. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].
4. F.L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys. Lett. B 659 (2008) 703 [arXiv:0710.3755] [INSPIRE].
5. F. Bezrukov, A. Magnin, M. Shaposhnikov and S. Sibiryakov, Higgs inflation: consistency and generalisations, JHEP 01 (2011) 016 [arXiv:1008.5157] [INSPIRE].
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献