Assessing organic material on single-use vessel sealing devices: a comparative study of reprocessed and new LigaSure™ devices

Author:

Chivukula Swathi Ramesh,Lammers Steven,Wagner JenniferORCID

Abstract

Abstract Background Reprocessed devices must be thoroughly cleaned prior to sterilization to ensure efficacy of sterilization agents. Many single-use devices are not designed to be thoroughly cleaned. Interlocking design features inherent to LigaSure™ vessel sealing devices may prevent thorough cleaning and promote accumulation of human tissue that cannot be removed. Thus, the aim of this study was to compare industry reprocessed and new LigaSure™ vessel sealing devices for organic material. Methods A total of 168, 84 new and 84 reprocessed, vessel sealing devices were disassembled and inspected for the presence of residual organic matter using visual, microscopic, and chemical analysis. Devices were randomized and test conductors blinded to group membership. Devices were aseptically disassembled and sent through visual inspection. Next, devices were either examined using light microscopy, scanning electron microscopy (SEM) or exposed to a solution that luminesces in the presence of hemoglobin. Additionally, 165 reprocessed devices were sent to a 3rd party lab for sterility testing via direct immersion culture for 14 days. Results Significant amounts of remnant organic material (C, N, O, S, Na, P) were observed with 81/84 reprocessed and 0/84 new devices failing inspection protocols. When tested for the presence of hemoglobin, only 1/12 reprocessed devices passed inspection. SEM of reprocessed devices revealed residues with liquid patterns and diffuse soiling with foreign material. Sterility testing of reprocessed devices revealed a sterility level < 6–3. Conclusions The abundance of material resembling human tissue observed on reprocessed VSDs suggests inadequate cleaning prior to sterilization. Atomic and morphological analyses of the remnant materials suggest that bacterial biofilms could also be present. Additionally, surface degradation and release of reinforcing glass fibers from the device were observed. Devices designed for single use can harbor significant amounts of remnant material that likely interfere with the sterilization process.

Funder

Medtronic

University of Colorado Denver|Anschutz Medical Campus, Department of Bioengineering

Publisher

Springer Science and Business Media LLC

Subject

Surgery

Reference34 articles.

1. Haque M, Sartelli M, McKimm J, Bakar MA (2018) Health care-associated infections–an overview. Infect Drug Resist 11:2321

2. Health Care-Associated Infections. Agency for Healthcare Research and Quality, Rockville, MD

3. Zimlichman E, Henderson D, Tamir O, Franz C, Song P, Yamin CK, Keohane C, Denham CR, Bates DW (2013) Health care-associated infections: a meta-analysis of costs and financial impact on the US health care system. JAMA Intern Med 173:2039–2046

4. Mansur J, JCI. Reuse of Single-Use Devices: Understanding Risks and Strategies for Decision-Making for Health Care Organizations (2017) Available at: https://www.jointcommissioninternational.org/-/media/feature/news/jci_white_paper_reuse_of_single_use_devices2pdf.pdf?db=web&hash=6A41E61718E881E936AF4289BE36DA82. Accessed 17 Mar 2020

5. US Food and Drug Administration, Medical device user fee and modernization act.  H.R. 3580,  107th Cong (2000) Availible at: https://www.fda.gov/industry/medical-device-user-fee-amendments-mdufa/medical-device-user-fee-and-modernization-act-2002-mdufma-pl-107-250. Accessed 5 May 2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3