Abstract
Abstract
Background
Simulation-based training may be used to acquire MIS skills. While mostly done in a simulation center, it is proposed that this training can be undertaken at-home as well. The aim of this study is to evaluate whether unsupervised at-home training and assessment of MIS skills is feasible and results in increased MIS skills.
Methods
Medical doctors and senior medical students were tested on their innate abilities by performing a pre-test on a take-home simulator. Henceforth, they followed a two-week interval training practicing two advanced MIS skills (an interrupted suture with knot tying task and a precise peg transfer task) and subsequently performed a post-test. Both tests and all training moments were performed at home. Performance was measured using motion analysis software (SurgTrac) and by expert-assessment and self-assessment using a competency assessment tool for MIS suturing (LS-CAT).
Results
A total of 38 participants enrolled in the study. Participants improved significantly between the pre-test and the post-test for both tasks. They were faster (632 s vs. 213 s, p < 0.001) and more efficient (distance of instrument tips: 9.8 m vs. 3.4 m, p = 0.001) in the suturing task. Total LS-CAT scores, rated by an expert, improved significantly with a decrease from 36 at the pre-test to 20 at the post-test (p < 0.001) and showed a strong correlation with self-assessment scores (R 0.771, p < 0.001).
The precise peg transfer task was completed faster (300 s vs. 163 s, p < 0.001) and more efficient as well (14.8 m vs. 5.7 m, p = 0.005). Additionally, they placed more rings correctly (7 vs. 12, p = 0.010).
Conclusion
Unsupervised at-home training and assessment of MIS skills is feasible and resulted in an evident increase in skills. Especially in times of less exposure in the clinical setting and less education on training locations this can aid in improving MIS skills.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献