Copper Toxicity in Maize: The Severity of the Stress is Reduced Depending on the Applied Fe-Chelating Agent

Author:

Franco Alessandro,Buoso Sara,Zanin LauraORCID,Pinton Roberto,Tomasi Nicola

Abstract

AbstractThe wide use of copper (Cu)-based fungicide has caused a stepwise accumulation of Cu in the environment increasing the occurrence of phytotoxicity in crops. To understand and alleviate this abiotic stress, maize seedlings were grown in hydroponic solution with different combinations of Cu and iron (Fe) forms. Results showed that maize Cu sensitivity is related to the nature of the form supplied and to the chelate-exchange processes that might involve other elements, such as Fe. The use of CuSO4 excess (100 µM) caused severe reduction of plant growth, over accumulation of Cu, high activity of antioxidant enzymes, and impairment of the acquisition of other nutrients. In presence of chelating agents (citrate and ethylenediaminetetraacetic acid, EDTA) the ability of plants to tolerate high Cu-levels depends on the Fe nutritional status. Copper phytotoxicity symptoms do not occur when Cu was supplied chelated by EDTA. The use of synthetic agent EDTA (as Cu-EDTA and Fe-EDTA) prevented the accumulation of toxic Cu-level in plants and allowed a better homeostasis among nutrients. In presence of citrate, high concentration of Cu occurred in plants but its phytotoxicity was limited when even EDTA was available in solution. Results suggest that maize plants can operate a good control of nutritional status when Cu-excess is present concomitantly with a synthetic chelator (as EDTA) even when supplied as a Fe-fertilizer. These results pave the way to provide guidelines for the fertilization managements on Cu-contaminated soils to alleviate phytotoxicity in crops.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3