Mobile Signaling Peptides: Secret Molecular Messengers with a Mighty Role in Plant Life

Author:

Pandita DeepuORCID,Bhat Javaid Akhter,Wani Shabir HussainORCID,ElSayed Abdelaleim Ismail,Nawaz Ghazala,Mukherjee Soumya,Reyes Vincent P.,Kumar AnujORCID,Shen Qiufang,Ganie Showkat AhmadORCID,Siddique Kadambot H. M.ORCID

Abstract

AbstractAdaptive mechanisms for unfavorable environments have evolved in plants for thousands of generations, primarily in the form of endogenous chemical signals and the coordination of physiological processes. Signaling peptides (SPs) are diverse molecular messengers in various stress responses which have been identified in different plant families. SPs are recognized by the membrane-localized receptors and co-receptors, leading to downstream signaling for various plant responses. Progress in in silico analysis, along with other factors, has increased our understanding of the signaling peptide-mediated regulatory mechanisms underlying the entire plant life cycle. SPs mediate both long-distance (root-to-shoot-to-root) and local cell–cell communication via vascular system to communicate and coordinate with plant organs at distant locations. During abiotic stress, SPs inside plant cells perceive stress signals and transfer information at short and long physiological ranges through the signal transduction pathway, causing stress-responsive gene expression. SPs interact with pathogens and mediate cell-to-cell communication via signaling pathways. There are intriguing relationships between phytohormones and the secondary signaling cascades which are mediated by SPs. During biotic or abiotic stress, different peptides trigger jasmonic acid, ethylene, and ABA signaling, involving several secondary messengers. These messengers mediate the stress response via shared signaling components of ROS, Ca2+, and MAPKs, and they modify the gene expression for different phytohormones. In this review, we highlight current knowledge on the role of signaling peptides in plant adaptation, growth, and development. We aim to analyze the SP-receptor interactions and the significance of crosstalk between a few sample SPs and phytohormones. Potential directions on how scientists can use this information for crop improvement are also suggested.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3