Candidate Gene Transcriptional Signature Unravels the Reprogramming Occurring in the Peel of Apple Fruit of ‘Granny Smith’ During Postharvest Storage

Author:

Vittani Lorenzo,Populin Francesca,Stuerz Stefan,Fava Federico,Robatscher Peter,Zanella Angelo,Costa Fabrizio,Busatto NicolaORCID

Abstract

AbstractAfter harvest fruit are stored to preserve the quality features established during the on-tree development and maturation, ensuring thus a continuous availability of fresh fruit on the market. For certain fruit species like apple, storage can last for almost a year, especially when coupled with several strategies, such as the reduction of the oxygen concentration or the application of ethylene competitor molecules, like 1-methylcyclopropene (1-MCP). To guarantee the maintenance of the highest quality, the monitoring of the physiological processes ongoing during the postharvest ripening is compelling. For this purpose, 16 genes belonging to key fruit ripening pathways, such as the ethylene and the sugar/fermentation metabolism, have been chosen as potential markers for the molecular characterization of the major changes occurring in the fruit during storage. Among these genes, ACS, PPO, PG1, RAP2-like, and ADH exhibited the most significant differential expression across the various samples. Based on the transcriptional pattern, this set of genes constitutes a valuable molecular tool for a precise and reliable RNA-based monitoring of the postharvest ripening progression and fermentation process in apples. PPO, together with S6PDH, were furthermore employed to inspect the onset of the superficial scald in apple and resulted to correlate with the evaluation of the incidence of this disorder and the accumulation of the sugar alcohol sorbitol, known to play important protecting roles to chilling injuries. The assessment of the transcriptional signature of these elements can facilitate the development of gene expression markers suitable for a more informed investigation of the physiological progression of the postharvest ripening in apples, ultimately leading to the promotion of high-quality stored apples, extending storage time while minimizing postharvest disorders and fruit loss.

Funder

Fondazione Edmund Mach - Istituto Agrario di San Michele all'Adige

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3