An exploration of frictional and vibrational behaviors of textured deep groove ball bearing in the vicinity of requisite minimum load

Author:

Vidyasagar K. E. Ch.,Pandey R. K.,Kalyanasundaram Dinesh

Abstract

AbstractIn case of lightly loaded radial ball bearings, failure mechanisms other than fatigue such as smearing of raceways due to increased frictional torque and vibrations often prevail. Hence, attempts have been made herein for reducing the frictional torque and minimizing the vibrations of a radial deep groove ball bearing employing surface textures at the inner race. Nanosecond pulsed laser was used to create texture (involving micro-dimples having different dimple area density) on the inner race of test bearings. Using an in-house developed test rig, frictional torque and vibrational parameters were measured at different speeds and light loads (i.e. in vicinity of 0.01C, where C is dynamic load capacity of radial ball bearing). Significant reduction in frictional torque and overall vibrations were found in the presence of micro-dimples on inner race at light loads irrespective of operating speeds. Even without satisfying the minimum load needed criteria for the satisfactory operation, substantial reduction in smearing marks was found on the races of textured ball bearings in comparison to conventional cases.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3