Nano-enhanced biolubricant in sustainable manufacturing: From processability to mechanisms

Author:

Zhang Yanbin,Li Hao Nan,Li Changhe,Huang Chuanzhen,Ali Hafiz Muhammad,Xu Xuefeng,Mao Cong,Ding Wenfeng,Cui Xin,Yang Min,Yu Tianbiao,Jamil Muhammad,Gupta Munish Kumar,Jia Dongzhou,Said Zafar

Abstract

AbstractTo eliminate the negative effect of traditional metal-working fluids and achieve sustainable manufacturing, the usage of nano-enhanced biolubricant (NEBL) is widely researched in minimum quantify lubrication (MQL) machining. It’s improved tool wear and surface integrity have been preliminarily verified by experimental studies. The previous review papers also concluded the major influencing factors of processability including nano-enhancer and lubricant types, NEBL concentration, micro droplet size, and so on. Nevertheless, the complex action of NEBL, from preparation, atomization, infiltration to heat transfer and anti-friction, is indistinct which limits preparation of process specifications and popularity in factories. Especially in the complex machining process, in-depth understanding is difficult and meaningful. To fill this gap, this paper concentrates on the comprehensive quantitative assessment of processability based on tribological, thermal, and machined surface quality aspects for NEBL application in turning, milling, and grinding. Then it attempts to answer mechanisms systematically considering multi-factor influence of molecular structure, physicochemical properties, concentration, and dispersion. Firstly, this paper reveals advanced lubrication and heat transfer mechanisms of NEBL by quantitative comparison with biolubricant-based MQL machining. Secondly, the distinctive filmformation, atomization, and infiltration mechanisms of NEBL, as distinguished from metal-working fluid, are clarified combining with its unique molecular structure and physical properties. Furtherly, the process optimization strategy is concluded based on the synergistic relationship analysis among process variables, physicochemical properties, machining mechanisms, and performance of NEBL. Finally, the future development directions are put forward aiming at current performance limitations of NEBL, which requires improvement on preparation and jet methods respects. This paper will help scientists deeply understand effective mechanism, formulate process specifications, and find future development trend of this technology.

Publisher

Springer Science and Business Media LLC

Subject

Surfaces, Coatings and Films,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3