C@Ag core-shell structure as lubricating additives towards high efficient lubrication

Author:

Ao Dong,Fan Xiaoqiang,Zhu Minhao

Abstract

AbstractEfficient cooperative lubrication can be achieved via the introduction of core-shell structure lubricant additives with hard core and soft shell, for obtaining the expected anti-wear performance from the structural changes in the friction process. In this study, C@Ag microspheres with a core-shell structure were prepared by the redox method with carbon spheres as the core and Ag nanoparticles as the shell. Their tribological behaviors as base oil (G1830) additive with different concentrations were investigated in detail. Compared with base oil, the addition of C@Ag particles at 0.5 wt% can reduce the coefficient of friction (COF) and wear volume (Wv) up to 15.5% and 88%, respectively. More importantly, C@Ag particles provide superior lubrication performance to single additive (like carbon sphere (CS) and Ag nanoparticle). C@Ag core-shell particles contribute to the formation of tribo-film by melt bonding of flexible Ag and carbon sphere (CS) toward excellent self-repair performance and high-efficiency lubrication. Hence, core-shell structural nanoparticles with hard-core and soft-shell hold bright future for high-performance lubrication application.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3