The impact of sensing parameters on data management and anomaly detection in structural health monitoring

Author:

Favarelli Elia,Testi Enrico,Giorgetti AndreaORCID

Abstract

AbstractThe massive and autonomous structural health monitoring (SHM) of bridges is a problem that is of growing interest due to its importance and topicality. However, a considerable amount of data must be elaborated and managed in such an application. This paper proposes a set of machine learning (ML) tools to detect anomalies in a bridge from vibrational measurements using the minimum amount of data. The proposed framework starts from the fundamental frequencies extracted through operational modal analysis (OMA) and clustering, followed by a density-based time-domain tracking algorithm. The fundamental frequencies extracted are then fed to one-class classification (OCC) algorithms that perform anomaly detection. Then, to reduce the amount of data, we analyze the effect of the number of sensors, the number of bits per sample, the observation time, and the measurement noise on damage detection performance. As a case study, the Z-24 bridge is considered because of the extensive database of accelerometric measurements in both standard and damaged conditions. A comparison of OCC algorithms, such as principal component analysis (PCA), kernel principal component analysis (KPCA), Gaussian mixture model (GMM) and one-class classifier neural network (OCCNN)$$^2$$ 2 is performed, and their robustness to data shrinking is evaluated. In many cases, OCCNN$$^2$$ 2 increases the performance with respect to classical anomaly detection techniques in terms of accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3