Approximation of Wave Packets on the Real Line

Author:

Iserles Arieh,Luong Karen,Webb Marcus

Abstract

AbstractIn this paper we compare three different orthogonal systems in $$\textrm{L}_2({\mathbb {R}})$$ L 2 ( R ) which can be used in the construction of a spectral method for solving the semi-classically scaled time dependent Schrödinger equation on the real line, specifically, stretched Fourier functions, Hermite functions and Malmquist–Takenaka functions. All three have banded skew-Hermitian differentiation matrices, which greatly simplifies their implementation in a spectral method, while ensuring that the numerical solution is unitary—this is essential in order to respect the Born interpretation in quantum mechanics and, as a byproduct, ensures numerical stability with respect to the $$\textrm{L}_2({\mathbb {R}})$$ L 2 ( R ) norm. We derive asymptotic approximations of the coefficients for a wave packet in each of these bases, which are extremely accurate in the high frequency regime. We show that the Malmquist–Takenaka basis is superior, in a practical sense, to the more commonly used Hermite functions and stretched Fourier expansions for approximating wave packets.

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Mathematics,Analysis

Reference29 articles.

1. Boyd, J.P.: Spectral methods using rational basis functions on an infinite Interval. J. Comput. Phys. 69(1), 112–142 (1987)

2. Boyd, J.P.: Chebyshev and Fourier Spectral Methods, 2nd edn. Dover Publications Inc, Mineola, NY (2001)

3. Christov, C.I.: A Complete Orthonormal System of Functions in $$\text{ L}^{2}(-\infty,\infty )$$ space. SIAM J. Appl. Math. 42(6), 1337–1344 (1982)

4. de Bruijn, N.G.: Asymptotic Methods in Analysis. Bibliotheca mathematica. Dover Publications, Mineola (1981)

5. Dietert, H., Iserles, A.: Fast approximation on the real line. Technical Report NA02, DAMTP, University of Cambridge (2017)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An efficient spectral method for the fractional Schrödinger equation on the real line;Journal of Computational and Applied Mathematics;2024-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3