New genetic insights into immunotherapy outcomes in gastric cancer via single-cell RNA sequencing and random forest model

Author:

Yu Dajun,Yang Jie,Wang BinBin,Li Zhixiang,Wang Kai,Li Jing,Zhu Chao

Abstract

Abstract Objective The high mortality rate of gastric cancer, traditionally managed through surgery, underscores the urgent need for advanced therapeutic strategies. Despite advancements in treatment modalities, outcomes remain suboptimal, necessitating the identification of novel biomarkers to predict sensitivity to immunotherapy. This study focuses on utilizing single-cell sequencing for gene identification and developing a random forest model to predict immunotherapy sensitivity in gastric cancer patients. Methods Differentially expressed genes were identified using single-cell RNA sequencing (scRNA-seq) and gene set enrichment analysis (GESA). A random forest model was constructed based on these genes, and its effectiveness was validated through prognostic analysis. Further, analyses of immune cell infiltration, immune checkpoints, and the random forest model provided deeper insights. Results High METTL1 expression was found to correlate with improved survival rates in gastric cancer patients (P = 0.042), and the random forest model, based on METTL1 and associated prognostic genes, achieved a significant predictive performance (AUC = 0.863). It showed associations with various immune cell types and negative correlations with CTLA4 and PDCD1 immune checkpoints. Experiments in vitro and in vivo demonstrated that METTL1 enhances gastric cancer cell activity by suppressing T cell proliferation and upregulating CTLA4 and PDCD1. Conclusion The random forest model, based on scRNA-seq, shows high predictive value for survival and immunotherapy sensitivity in gastric cancer patients. This study underscores the potential of METTL1 as a biomarker in enhancing the efficacy of gastric cancer immunotherapy.

Funder

the Anhui Provincial Education Department

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3