Influence of direct electric current on wetting behavior during brazing

Author:

Bobzin Kirsten,Wietheger Wolfgang,Hebing Julian,Zhao Lidong,Schmidt Alexander,Iskandar Riza,Mayer Joachim

Abstract

AbstractThe wetting behavior of liquid metals is of great importance for many processes. For brazing, however, a targeted modification beyond the adjustment of conventional process parameters or the actual set-up was not possible in the past. Therefore, the effect of direct electric current along the surface of a steel substrate on the wetting behavior and the formation of the spreading pattern of an industrial nickel-based filler metal was investigated at a temperature above T = 1000 °C in a vacuum brazing furnace. By applying direct current up to I = 60 A the wetted surface area could be increased and the spreading of the molten filler metal could be controlled in dependence of the polarity of the electric current. The electric component of the Lorentz force is supposed to be feasible reasons for the observed dependence of the electrical polarity on the filler metal spreading direction. To evaluate the influence of the electric current on the phase formation subsequent selective electron microscope analyses of the spreading pattern were carried out.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Reference24 articles.

1. Bobzin K, Öte M, Wiesner S, et al. Surface pretreatment of steel sheets for a compound casting process of low-distortion and low-gap aluminium cast-steel sheet hybrids. In: Proceedings of the 12th International Conference on Brazing, High Temperature Brazing and Diffusion Bonding. Aachen: DVS Media GmbH, 2019, 112–116

2. Liu Y B, Li J Z, Sun Q J, et al. Optimization ofmagnetic oscillation system and microstructural characteristics in arc welding of Al/Mg alloys. Journal of Manufacturing Processes, 2019, 39: 69–8

3. Türpe M, Grünenwald B, Hofmann E, et al. Aluminium vacuum brazing—Surprising process or understood incompletely? In: Proceedings of the 10th International Congress and Exhibition on Aluminum Brazing. Düsseldorf: DVS Media GmbH, 2018, 64–68

4. Chandra S, Fauchais P. Formation of solid splats during thermal spray deposition. Journal of Thermal Spray Technology, 2009, 18(2): 148–180

5. Eustathopulous N, Nicholas M G, Drevet B. Wettability at High Temperatures. Oxford: Pergamon Press, 1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3