Comprehensive analysis of the influence of structural and dynamic parameters on the accuracy of nano-precision positioning stages

Author:

Liang Chengyuan,Yuan Fang,Chen Xuedong,Jiang Wei,Zeng Lizhan,Luo Xin

Abstract

AbstractNano-precision positioning stages are characterized by rigid-flexible coupling systems. The complex dynamic characteristics of mechanical structure of a stage, which are determined by structural and dynamic parameters, exert a serious influence on the accuracy of its motion and measurement. Systematic evaluation of such influence is essential for the design and improvement of stages. A systematic approach to modeling the dynamic accuracy of a nano-precision positioning stage is developed in this work by integrating a multi-rigid-body dynamic model of the mechanical system and measurement system models. The influence of structural and dynamic parameters, including aerostatic bearing configurations, motion plane errors, foundation vibrations, and positions of the acting points of driving forces, on dynamic accuracy is investigated by adopting the H-type configured stage as an example. The approach is programmed and integrated into a software framework that supports the dynamic design of nano-precision positioning stages. The software framework is then applied to the design of a nano-precision positioning stage used in a packaging lithography machine.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering

Reference37 articles.

1. ITRS. 2013 Edition, IRC Overview, International Technology Roadmap for Semiconductors

2. Torralba M, Valenzuela M, Yagüe-Fabra J A, et al. Large range nanopositioning stage design: A three-layer and two-stage platform. Measurement, 2016, 89: 55–71

3. Gao W, Kim S W, Bosse H, et al. Measurement technologies for precision positioning. CIRP Annals-Manufacturing Technology, 2015, 64(2): 773–796

4. Smith S T, Chetwynd D G. Foundations of Ultraprecision Mechanism Design. London: Taylor & Francis e-Library, 2005

5. Schmidt R M, Schitter G, Eijk J V. The Design of High Performance Mechatronics: High-Tech Functionality by Multidisciplinary System Integration. Amsterdam: Delft University Press, 2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3