Skip to main content

Advertisement

Log in

Printable, flexible ceramic fiber paper based on electrospinning

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Based on the fact that it is challenging for the polymer flexible circuit substrates to meet the requirements of serving in high-temperature environments, this work proposed the idea of using printable ceramic fiber paper as a high-temperature flexible circuit substrate. A ceramic fiber paper with all ceramic components had been developed via electrospinning, solving the problems of low strength and severe strength drop at high temperatures of traditional ceramic fiber paper. The tensile strength of the prepared ceramic fiber paper is 2.63 MPa, and the reliable service temperature is 1200 °C. Its bulk density is about 1.5 times that of traditional ceramic fiber paper. It can be printed with patterns by commercial inkjet printers like ordinary printing paper and has excellent printability. The feasibility of ceramic fiber paper as a flexible circuit substrate was verified by constructing a simple circuit. When the fiber paper is significantly bent, the circuit still forms a complete path, which proves that it has a strong application potential for high-temperature flexible circuit substrate and is expected to promote the development of flexible electronic devices serving at extreme high-temperature environments.

Graphical abstract

摘要

传统聚合物柔性电路基板,难以满足在高温环境下使用的要求。在这项工作中我们提出了使用可印刷陶瓷纤维纸作为高温柔性电路基板的创新思路。通过静电纺丝研制出全陶瓷成分的陶瓷纤维纸,解决了传统陶瓷纤维纸强度低、高温下强度下降严重的问题。所制备的陶瓷纤维纸的抗拉强度为2.63 MPa,可靠使用温度为1200 ℃。其堆积密度约为传统陶瓷纤维纸的1.5倍,可以像普通打印纸一样用商用喷墨打印机进行图案打印,具有优良的印刷适性。此外,搭建了一个简单的电路对陶瓷纤维纸作为柔性电路基板的可行性进行了验证。当纤维纸发生明显弯曲时,电路仍可以导通,证明其在高温柔性电路基板方面具有强大的应用潜力,有望推动服务于极端高温环境的柔性电子器件的发展。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu YQ, He K, Chen G, Leow WR, Chen XD. Nature-inspired structural materials for flexible electronic devices. Chem Rev. 2017;117(20):12893. https://doi.org/10.1021/acs.chemrev.7b00291.

    Article  CAS  PubMed  Google Scholar 

  2. Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt AJ, Ferrari AC, Kelly MJ, Robertson J, Amaratunga GAJ, Milne WI. Flexible electronics: the next ubiquitous platform. Proc IEEE. 2012;100:1486. https://doi.org/10.1109/JPROC.2012.2190168.

    Article  Google Scholar 

  3. Wu HH, Zhuo FP, Qiao HM, Venkataraman LK, Zheng MP, Wang SZ, Huang H, Li B, Mao XP, Zhang QB. Polymer-/ceramic-based dielectric composites for energy storage and conversion. Energy Environ Mater. 2022;5(2):486. https://doi.org/10.1002/eem2.12237.

    Article  CAS  Google Scholar 

  4. Vu CC, Truong TTN, Kim J. Fractal structures in flexible electronic devices. Mater Today Phys. 2022;27:100795. https://doi.org/10.1016/j.mtphys.2022.100795.

    Article  Google Scholar 

  5. Jiang S, Liu XJ, Liu JP, Ye D, Duan YQ, Li K, Yin ZP, Huang YA. Flexible metamaterial electronics. Adv Mater. 2022;34:2200070. https://doi.org/10.1002/adma.202200070.

    Article  CAS  Google Scholar 

  6. Wu HH, Zhu JM, Zhang TY. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy. 2015;16:419. https://doi.org/10.1016/j.nanoen.2015.06.030.

    Article  CAS  Google Scholar 

  7. You I, Mackanic DG, Matsuhisa N, Kang J, Kwon J, Beker L, Mun J, Suh W, Kim TY, Tok JBH, Bao Z, Jeong U. Artificial multimodal receptors based on ion relaxation dynamics. Science. 2020;370:961. https://doi.org/10.1126/science.aba5132.

    Article  CAS  PubMed  Google Scholar 

  8. Rim YS, Bae SH, Chen HJ, De Marco N, Yang Y. Recent progress in materials and devices toward printable and flexible sensors. Adv Mater. 2016;28:4415. https://doi.org/10.1002/adma.201505118.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang CL, Cha RT, Li RY, Tang LX, Long KY, Zhang ZL, Zhang L, Jiang XY. Cellophane or nanopaper: which is better for the substrates of flexible electronic devices? ACS Sustainable Chem. Eng. 2020;8(21):7774. https://doi.org/10.1021/acssuschemeng.9b06956.

    Article  CAS  Google Scholar 

  10. Baeg K-J, Lee J. Flexible electronic systems on plastic substrates and textiles for smart wearable technologies. Adv Mater Technol. 2020;5:2000071. https://doi.org/10.1002/admt.202000071.

    Article  CAS  Google Scholar 

  11. Zhou YL, Cheng WN, Bai YZ, Hou C, Li K, Huang YA. Rise of flexible high-temperature electronics. Rare Met. 2023;42(6):1773. https://doi.org/10.1007/s12598-023-02298-w.

    Article  CAS  Google Scholar 

  12. Duan YS, Zhang JX, Li XG, Shi Y, Xie JJ, Jiang DL. Low temperature pressureless sintering of silicon nitride ceramics for circuit substrates in powder electronic devices. Ceram Int. 2018;44(4):4375. https://doi.org/10.1016/j.ceramint.2017.12.033.

    Article  CAS  Google Scholar 

  13. Liu ZJ, Tian B, Jiang ZD, Li SM, Lei JM, Zhang ZK, Liu JJ, Shi P, Lin QJ. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200°C. Int J Extreme Manuf. 2023;5:015601. https://doi.org/10.1088/2631-7990/aca44d.

    Article  Google Scholar 

  14. Aryal M, Allison SW, Olenick K, Sabri F. Flexible thin film ceramics for high temperature thermal sensing applications. Opt Mater. 2020;100:109656. https://doi.org/10.1016/j.optmat.2020.109656.

    Article  CAS  Google Scholar 

  15. Siegel A, Phillips ST, Dickey MD, Lu N, Suo Z, Whitesides GM. Foldable printed circuit boards on paper substrates. Adv Fun Mater. 2010;20:28. https://doi.org/10.1002/adfm.200901363.

    Article  CAS  Google Scholar 

  16. Mathies F, List-Kratochvil EJW, Unger EL. Advances in inkjet-printed metal halide perovskite photovoltaic and optoelectronic devices. Energy Technol. 2020;8:1900991. https://doi.org/10.1002/ente.201900991.

    Article  CAS  Google Scholar 

  17. Wang PR, Li J, Wang GQ, He L, Yu YQ, Xu B. Multimaterial additive manufacturing of LTCC matrix and silver conductors for 3d ceramic electronics. Adv Mater Technol. 2022;7:2101462. https://doi.org/10.1002/admt.202101462.

    Article  CAS  Google Scholar 

  18. Jeong S, Song HC, Lee WW, Choi Y, Lee SS, Ryu B-H. Combined role of well-dispersed aqueous Ag ink and the molecular adhesive layer in inkjet printing the narrow and highly conductive Ag features on a glass substrate. J Phys Chem C. 2010;114:22277. https://doi.org/10.1021/jp106994t.

    Article  CAS  Google Scholar 

  19. Raut NC, Al-Shamery K. Inkjet printing metals on flexible materials for plastic and paper electronics. J Mater Chem C. 2018;6:1618. https://doi.org/10.1039/C7TC04804A.

    Article  CAS  Google Scholar 

  20. Le SR, Sun KN, Zhang NQ, An MZ, Zhou DR, Zhang JD, Li DG. Novel compressive seals for solid oxide fuel cells. J Power Sources. 2006;161(2):901. https://doi.org/10.1016/j.jpowsour.2006.05.016.

    Article  CAS  Google Scholar 

  21. Headley AJ, Hileman MB, Robbins AS, Piekos ES, Stirrup EK, Roberts CC. Thermal conductivity measurements and modeling of ceramic fiber insulation materials. Int J Heat Mass Tran. 2019;129:1287. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.060.

    Article  Google Scholar 

  22. Ceramic fiber paper standard grade. https://www.ceramaterials.com/product/ceramic-fiber-paper-standard-grade.

  23. Cecchini JP, Banús ED, Leonardi SA, Zanuttini MA, Ulla MA, Milt VG. Flexible-structured systems made of ceramic fibers containing Pt-NaY zeolite used as CO oxidation catalysts. J Mater Sci. 2015;50:755. https://doi.org/10.1007/s10853-014-8635-z.

    Article  CAS  Google Scholar 

  24. Xie YS, Peng Y, Deng ZZ, Zhu Z, Cheng Y, Ma DH, Zhu LY, Zhang XH. Synergistic regulation of temperature resistance and thermal insulation performance of zirconia-based ceramic fibers. Rare Met. 2023;42(12):4189. https://doi.org/10.1007/s12598-023-02336-7.

    Article  CAS  Google Scholar 

  25. Xie YS, Peng Y, Ma DH, Liu W, Deng ZZ, Zhu LY, Zhang GH, Wang XQ. Lightweight, high-strength, flexible YAG fibrous membrane for efficient heat insulation. J Alloy Compd. 2021;876:159978. https://doi.org/10.1016/j.jallcom.2021.159978.

    Article  CAS  Google Scholar 

  26. Li H, Liu YS, Liu YS, Zeng QF, Liang JJ. Microstructure and mechanical properties of 3D printed ceramics with different vinyl acetate contents. Rare Met. 2021;40(11):3241. https://doi.org/10.1007/s12598-020-01685-x.

    Article  CAS  Google Scholar 

  27. Li SZ, Zhang XX, Cheng XT, Han GT, Si Y, Liu YT, Yu JY, Ding B. Flexible and compressive Al2O3/ZrO2/Y2O3 nanofibrous membranes for thermal insulation at 1400 °C. Compos Commun. 2022;35: 101290. https://doi.org/10.1016/j.coco.2022.101290.

    Article  Google Scholar 

  28. Li B, Niu CM, Zhang TL, Chen GY, Zhang G, Wang D, Zhou XY, Zhu JM. Advances of machining techniques for gradient structures in multi-principal-element alloys. Rare Met. 2022;41(12):4015. https://doi.org/10.1007/s12598-022-02075-1.

    Article  CAS  Google Scholar 

  29. Peng Y, Xie YS, Wang L, Liu LX, Zhu SL, Ma DH, Zhu LY, Zhang GH, Wang XQ. High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation. J Eur Ceram Soc. 2021;41(2):1471. https://doi.org/10.1016/j.jeurceramsoc.2020.09.071.

    Article  CAS  Google Scholar 

  30. Deng ZZ, Xie YS, Liu W, Dong JH, Peng Y, Zhu Z, Zhu LY, Zhang GH, Wang XQ, Xu D. High strength, low thermal conductivity and collapsible of Y2O3-stablized HfO2 crystalline fibrous membranes. Ceram Int. 2022;48(12):16715. https://doi.org/10.1016/j.ceramint.2022.02.220.

    Article  CAS  Google Scholar 

  31. Lakiza S, Lopato L. Phase diagrams of the systems Al2O3–ZrO2–Ln(Y)2O3 as a source of multiphase eutectics for creating composite structural and functional materials. J Eur Ceram Soc. 2011;31(7):1293. https://doi.org/10.1016/j.jeurceramsoc.2010.12.004.

    Article  CAS  Google Scholar 

  32. Neuroth G, Wallrafen F. Czochralski growth and characterisation of pure and doped YAlO3 single crystals. J Cryst Growth. 1999;198–199:435. https://doi.org/10.1016/S0022-0248(98)01073-2.

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 52202090 and 52102093), China Postdoctoral Science Foundation (No. 2021M690817), Heilongjiang Provincial Postdoctoral Science Foundation (Nos. LBH-Z21050 and LBH-Z20144) and the State Key Laboratory of Intelligent Manufacturing Equipment and Technology (No. IMETKF2023004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Shuai Xie.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, YS., Cheng, Y., Lyu, Y. et al. Printable, flexible ceramic fiber paper based on electrospinning. Rare Met. 43, 2739–2746 (2024). https://doi.org/10.1007/s12598-023-02562-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02562-z

Keywords

Navigation