Timescales and contribution of heating and helicity effect in helicity-dependent all-optical switching

Author:

Li Guan-QiORCID,Zheng Xiang-Yu,Wang Jun-Lin,Lu Xian-Yang,Wu JingORCID,Cai Jian-WangORCID,Meng Hao,Liu Bo,Ostler Thomas A.,Xu Yong-BingORCID

Abstract

AbstractThe heating and helicity effects induced by circularly polarized laser excitation are entangled in the helicity-dependent all-optical switching (HD-AOS), which hinders understanding the magnetization dynamics involved. Here, applying a dual-pump laser excitation, first with a linearly polarized (LP) laser pulse followed by a circularly polarized (CP) laser pulse, the timescales and contribution from heating and helicity effects in HD-AOS were identified with a Pt/Co/Pt triple-layer. When the LP laser pulses preheat the sample to a nearly fully demagnetized state, the CP laser pulses with a power reduced by 80% switch the sample’s magnetization. By varying the time delay between the two pump pulses, the results show that the helicity effect, which gives rise to the deterministic helicity-induced switching, arises almost instantly within 200 fs close to the pulse width upon laser excitation. The results reveal that the transient magnetization state upon which CP laser pulses impinge is the key factor for achieving HD-AOS, and importantly, the tunability between heating and helicity effects with the unique dual-pump laser excitation approach will enable HD-AOS in a wide range of magnetic material systems having wide-ranging implications for potential ultrafast spintronics applications. Graphical abstract

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Research and Development Program of China

EPSRC

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Metals and Alloys,Physical and Theoretical Chemistry,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3