Quantifying the Impact of 3D Pore Space Morphology on Soil Gas Diffusion in Loam and Sand

Author:

Prifling BenediktORCID,Weber Matthias,Ray Nadja,Prechtel Alexander,Phalempin Maxime,Schlüter Steffen,Vetterlein Doris,Schmidt Volker

Abstract

AbstractEffective diffusion is an important macroscopic property for assessing transport in porous media. Numerical computations on segmented 3D CT images yield precise estimates for diffusive properties. On the other hand, geometrical descriptors of pore space such as porosity, specific surface area and further transport-related descriptors can be easily computed from 3D CT images and are closely linked to diffusion processes. However, the investigation of quantitative relationships between these descriptors and diffusive properties for a diverse range of porous structures is still ongoing. In the present paper, we consider three different soil samples of each loam and sand for a total of six samples, whose 3D microstructure is quantitatively investigated using univariate as well as bivariate probability distributions of geometrical pore space descriptors. This information is used for investigating microstructure–property relationships by means of empirically derived regression formulas, where a particular focus is put on the differences between loam and sand samples. Due to the analytical nature of these formulas, it is possible to obtain a deeper understanding for the relationship between the 3D pore space morphology and the resulting diffusive properties. In particular, it is shown that formulas existing so far in the literature for predicting soil gas diffusion can be significantly improved by incorporating further geometrical descriptors such as geodesic tortuosity, chord lengths, or constrictivity of the pore space. The robustness of these formulas is investigated by fitting the regression parameters on different data sets as well as by applying the empirically derived regression formulas to data that is not used for model fitting. Among others, it turns out that a formula based on porosity as well as mean and standard deviation of geodesic tortuosity performs best with regard to the coefficient of determination and the mean absolute percentage error. Moreover, it is shown that regarding the prediction of diffusive properties the concept of geodesic tortuosity is superior to geometric tortuosity, where the latter is based on the creation of a skeleton of the pore space.

Funder

Deutsche Forschungsgemeinschaft

Universität Ulm

Publisher

Springer Science and Business Media LLC

Subject

General Chemical Engineering,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3