Integrating Pore-Scale Flow MRI and X-ray μCT for Validation of Numerical Flow Simulations in Porous Sedimentary Rocks
-
Published:2022-04-06
Issue:2
Volume:143
Page:373-396
-
ISSN:0169-3913
-
Container-title:Transport in Porous Media
-
language:en
-
Short-container-title:Transp Porous Med
Author:
Karlsons K.,de Kort D. W.,Alpak F. O.,Dietderich J.,Freeman J. J.,Appel M.,Mantle M. D.,Sederman A. J.,Gladden L. F.
Abstract
AbstractSingle-phase fluid flow velocity maps in Ketton and Estaillades carbonate rock core plugs are computed at a pore scale, using the lattice Boltzmann method (LBM) simulations performed directly on three-dimensional (3D) X-ray micro-computed tomography (µCT) images (≤ 7 µm spatial resolution) of the core plugs. The simulations are then benchmarked on a voxel-by-voxel and pore-by-pore basis to quantitative, 3D spatially resolved magnetic resonance imaging (MRI) flow velocity maps, acquired at 35 µm isotropic spatial resolution for flow of water through the same rock samples. Co-registration of the 3D experimental and simulated velocity maps and coarse-graining of the simulation to the same resolution as the experimental data allowed the data to be directly compared. First, the results are demonstrated for Ketton limestone rock, for which good qualitative and quantitative agreement was found between the simulated and experimental velocity maps. The flow-carrying microstructural features in Ketton rock are mostly larger than the spatial resolution of the µCT images, so that the segmented images are an adequate representation of the pore space. Second, the flow data are presented for Estaillades limestone, which presents a more heterogeneous case with microstructural features below the spatial resolution of the µCT images. Still, many of the complex flow patterns were qualitatively reproduced by the LBM simulation in this rock, although in some pores, noticeable differences between the LBM and MRI velocity maps were observed. It was shown that 80% of the flow (fractional summed z-velocities within pores) in the Estaillades rock sample is carried by just 10% of the number of macropores, which is an indication of the high structural heterogeneity of the rock; in the more homogeneous Ketton rock, 50% of the flow is carried by 10% of the macropores. By analysing the 3D MRI velocity map, it was found that approximately one-third of the total flow rate through the Estaillades rock is carried by microporosity—a porosity that is not captured at the spatial resolution of the µCT image.
Publisher
Springer Science and Business Media LLC
Subject
General Chemical Engineering,Catalysis
Reference48 articles.
1. Alpak, F.O., Berg, S., Zacharoudiou, I.: Prediction of fluid topology and relative permeability in imbibition in sandstone rock by direct numerical simulation. Adv. Water Resour. 122, 49–59 (2018a). https://doi.org/10.1016/j.advwatres.2018.09.001 2. Alpak, F.O., Gray, F., Saxena, N., Dietderich, J., Hofmann, R., Berg, S.: A distributed parallel multiple-relaxation-time lattice Boltzmann method on general-purpose graphics processing units for the rapid and scalable computation of absolute permeability from high-resolution 3D micro-CT images. Comput. Geosci. 22, 815–832 (2018b). https://doi.org/10.1007/s10596-018-9727-7 3. Alpak, F.O., Zacharoudiou, I., Berg, S., Dietderich, J., Saxena, N.: Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units. Comput. Geosci. (2019). https://doi.org/10.1007/s10596-019-9818-0 4. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part I: imaging and segmentation. Comput. Geosci. 50, 25–32 (2013a). https://doi.org/10.1016/j.cageo.2012.09.005 5. Andrä, H., Combaret, N., Dvorkin, J., Glatt, E., Han, J., Kabel, M., Keehm, Y., Krzikalla, F., Lee, M., Madonna, C., Marsh, M., Mukerji, T., Saenger, E.H., Sain, R., Saxena, N., Ricker, S., Wiegmann, A., Zhan, X.: Digital rock physics benchmarks-part II: computing effective properties. Comput. Geosci. 50, 33–43 (2013b). https://doi.org/10.1016/j.cageo.2012.09.008
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|