Abstract
AbstractIn this paper, we study the fattening effect of points over the complex numbers for del Pezzo surfaces $$\mathbb {S}_r$$
S
r
arising by blowing-up of $$\mathbb {P}^2$$
P
2
at r general points, with $$ r \in \{1, \dots , 8 \}$$
r
∈
{
1
,
⋯
,
8
}
. Basic questions when studying the problem of points fattening on an arbitrary variety are what is the minimal growth of the initial sequence and how are the sets on which this minimal growth happens characterized geometrically. We provide a complete answer for del Pezzo surfaces.
Publisher
Springer Science and Business Media LLC
Reference12 articles.
1. Baczyńska, M., Dumnicki, M., Habura, A., Malara, G., Pokora, P., Szemberg, T., Szpond, J., Tutaj-Gasińska, H.: Points fattening on $${\mathbb{P}}^1 \times {\mathbb{P}}^1$$ and symbolic powers of bi-homogeneous ideals. J. Pure Appl. Algebra 218, 1555–1562 (2014)
2. Bauer, T., Szemberg, T.: The effect of points fattening in dimension three. In: Recent Advances in Algebraic Geometry, London Mathematical Society Lecture Note Series, vol. 417, pp. 1–11 (2015)
3. Bocci, Ch., Chiantini, L.: The effect of points fattening on postulation. J. Pure Appl. Algebra 215, 89–98 (2011)
4. Chudnovsky, G.V.: Singular points on complex hypersurfaces and multidimensional Schwarz Lemma. In: Bertin, M.-J. (ed.) Séminaire de Théorie des Nombres, Paris 1979–80, Séminaire Delange-Pisot-Poitou, Progress in Mathematics, vol. 12. Birkhäuser, Boston (1981)
5. Di Rocco, S., Lundman, A., Szemberg, T.: The effect of points fattening on Hirzebruch surfaces. Math. Nachr. 288, 577–583 (2015)