Group Actions on Twisted Sums of Banach Spaces

Author:

Castillo Jesús M. F.ORCID,Ferenczi ValentinORCID

Abstract

AbstractWe study bounded actions of groups and semigroupsGon exact sequences of Banach spaces from the point of view of (generalized) quasilinear maps, characterize the actions on the twisted sum space by commutator estimates and introduce the associated notions ofG-centralizer andG-equivariant map. We will show that when (A)Gis an amenable group and (U) the target space is complemented in its bidual by aG-equivariant projection, then uniformly bounded compatible families of operators generate bounded actions on the twisted sum space; that compatible quasilinear maps are linear perturbations ofG-centralizers; and that, under (A) and (U),G-centralizers are bounded perturbations ofG-equivariant maps. The previous results are optimal. Several examples and counterexamples are presented involving the action of the isometry group of$$L_p(0,1), p\ne 2$$Lp(0,1),p2on the Kalton–Peck space$$Z_p$$Zp, certain non-unitarizable triangular representations of the free group$${\mathbb {F}}_\infty $$Fon the Hilbert space, the compatibility of complex structures on twisted sums, or bounded actions on the interpolation scale of$$L_p$$Lp-spaces. In the penultimate section we consider the category ofG-Banach spaces and study its exact sequences, showing that, under (A) and (U),G-splitting and usual splitting coincide. The purpose of the final section is to present some applications, showing that several previous result are optimal and to suggest further open lines of research.

Funder

MINCIN

Junta de Extremadura

FAPESP

CNPq

Publisher

Springer Science and Business Media LLC

Subject

General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The structure of Rochberg spaces;Journal of Functional Analysis;2024-08

2. Interpolator Symmetries and New Kalton-Peck Spaces;Results in Mathematics;2024-02-28

3. The Rochberg garden;Expositiones Mathematicae;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3