On the value of hydrochemical data for the interpretation of flow and transport processes in the Baget karst system, France

Author:

Richieri BeatriceORCID,Bittner Daniel,Sivelle Vianney,Hartmann Andreas,Labat David,Chiogna Gabriele

Abstract

AbstractContinuous hourly time series of hydrochemical data can provide insights into the subsurface dynamics and main hydrological processes of karst systems. This study investigates how high-resolution hydrochemical data can be used for the verification of robust conceptual event-based karst models. To match the high temporal variability of hydrochemical data, the LuKARS 2.0 model was developed on an hourly scale. The model concept considers the interaction between the matrix and conduit components to allow a flexible conceptualization of binary karst systems characterized by a perennial spring and intermittent overflow as well as possible surface water bypassing the spring. The model was tested on the Baget karst system, France, featuring a recharge area defined by the coexistence of karst and nonkarst areas. The Morris screening method was used to investigate parameter sensitivity, and to calibrate the model according to the Kling-Gupta Efficiency (KGE). Model verification was performed by considering additional hydrochemical constraints with the aim of representing the internal dynamics of the systems, i.e., water contributions from the various compartments of the conceptual model. The hydrochemical constraints were defined based on high-temporal resolution time series of SO42− and HCO3. The results of this study show that the simulation with the highest KGE among 9,000 model realizations well represents the dynamics of the spring discharge but not the variability of the internal fluxes. The implementation of hydrochemical constraints facilitates the identification of realizations reproducing the observed relative increase in the flow contribution from the nonkarst area.

Funder

Technische Universität München

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3