Review: Assessment of the aquifers in South Sudan with a focus on Lakes State

Author:

Goes B. J. M.

Abstract

AbstractThe current state of knowledge on groundwater in South Sudan (a data-scarce country) is presented, based on extensive field surveys in Lakes State in the central part of the country, limited published literature, and unpublished consultancy reports. The Basement Complex and the unconsolidated sediments of the Umm Ruwaba Formation are the most extensive geological formations and are the most exploited for groundwater. The water-resource potential properties of the main Umm Ruwaba aquifer (the ‘second’ aquifer, mostly confined) in Lakes State are generally fair to good, with a shallow piezometric surface (<25 m deep), favourable transmissivity (median 8.4, mean 21.5 m2/day), and low salinity and nitrate content. However, some areas have poor groundwater potential due to deep piezometric levels (up to 80 m deep), low transmissivity (mean <5 m2/day) and/or brackish salinity. The estimated recharge is modest (1–8 mm/year) due to predominantly confined aquifer conditions. Aquifer recharge mainly occurs along the geological boundary with the Basement Complex and from the Bahr el Jebel River. Published literature shows saline groundwater and a groundwater trough in northeast South Sudan that was interpreted as being related to a buried saline lake. Additional data on groundwater levels indicate that the extent of the trough may be less than originally sketched. In the Basement Complex, the groundwater potential varies over short distances and depends on the thickness and sand content of the weathered top layer and/or the presence of fractures; the transmissivity is generally low (median for Lakes State is 4.2 m2/day).

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Water Science and Technology

Reference69 articles.

1. Abdalla OAE (2008) Groundwater discharge mechanism in semi-arid regions and the role of evapotranspiration. Hydrol Process 22:2993–3009

2. Abdelsalam MG (2018) The Nile’s journey through space and time: a geological perspective. Earth Sci Rev 177:742–773

3. AfDBG (2013) South Sudan: an infrastructure action plan. A Program for Sustained Strong Economic Growth. African Development Bank Group (AfDBG), Abidjan, Côte d’Ivoire

4. Basheer M, Elagib NA (2019) Performance of satellite-based and GPCC 7.0 rainfall products in an extremely data-scarce country in the Nile Basin. Atmos Res 215:128–140

5. Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Syst Sci Discuss 7:4501–4533

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Nile River Basin ecohydrology system;The Nile River System, Africa;2024

2. Groundwater Pollution Impact on Food Security;Sustainability;2023-02-26

3. Introduction;Rising from the Depths: Water Security and Fragility in South Sudan;2023-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3