Highly integrable silicon micropumps using lateral electrostatic bending actuators

Author:

Uhlig SebastianORCID,Gaudet Matthieu,Langa Sergiu,Ruffert Christine,Jongmanns Marcel,Schenk Harald

Abstract

AbstractWe present the design, fabrication, and characterization of an innovative silicon-based micropump with high potential for portable lab-on-chip (LoC) as well as point-of-care (PoC) applications. The actuators of the pump are electrostatic driven in-plane bending devices, which were presented earlier (Borcia et al. in Phys Rev Fluids 3(8): 084202, 2018. 10.1103/PhysRevFluids.3.084202; Uhlig et al. in Micromachines, 9(4), 2018. 10.3390/mi9040190). This paper presents the characterization results achieved with the micropump. The dielectric non-polar liquid Novec7100™ was used as a test liquid due to its adequate physical properties. When applying a periodic voltage of 130 V, a flow rate of up to 80 µL/min was detected. The counter pressure amounts up to 30 kPa and the correspondent fluidic power (volumetric flow rate times the counter pressure) was calculated to 10 µW. The pump contains passive flap valves at the inlet and outlet, which are based on a bending cantilever design. Depending on the application requirements, the micropump can be designed modularly to adjust the specific parameters by an adequate arrangement of pump base units. In this paper, the proof of principle is shown using a single base unit with different number of stacked NED-actuator beams, as well as the serial arrangement of base units. Both modular concepts target the increase of backpressure of the NED-micropump in an inherently different way compared to conventional membrane micropumps.

Funder

EFRE

Fraunhofer-Institut für Photonische Mikrosysteme IPMS

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3