Upper limit estimate to wellhead flowing pressure and applicable gas production for a downhole throttling technique in high-pressure–high-temperature gas wells

Author:

Wang FaqingORCID,Qin Deyou,Zhang Bao,He Jianfeng,Wang Fangzhi,Zhong Ting,Zhang Zhida

Abstract

AbstractIn recent years, China has explored and exploited several high-pressure deep gas fields. Normally, high-pressure gas wells are gathered and processed through multichoke manifolds on well sites, creating hazards such as high wellhead flowing pressure (Pt) and high risk for on-site operation personnel. Moreover, downhole chokes have been used in place of surface chokes. In doing this, the Joule–Thomson (JT) effect is geothermally regulated, alleviating the formation of hydrates in surface facilities. However, its applicability to high-pressure gas wells is less explored. In an effort to guide its use, the objective of this study is to set selection criteria in terms of the allowable wellhead Pt and gas flow rate. First, isenthalpic lines are separately estimated for dry gas and high liquid hydrocarbon (LHC) content gas condensate at various inlet temperatures with the use of commercial software. Next, by analysis of the resulting isenthalpic curves, several results are obtained on the JT inversion curves and throttling process through a choke. Third, building on these insights, a method for projecting the maximum Pt is presented, leading to a value of 52.5 MPa. Finally, multiparameter models are separately run for two deep gas wells (8100 m and 5000 m), reinforcing the result of the pressure upper limit while maintaining a maximum daily gas production of 14 E4 m3. Both upper limits with a maximum Pt of 52.5 MPa and daily gas production of 14 E4 m3 are corroborated with field data records. These findings are vital to the selection of a viable high-pressure gas well for applying the downhole throttling technique.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3