Abstract
AbstractEnvironmentally sustainable methods of extracting hydrocarbons from the reservoir are increasingly becoming an important area of research. Several methods are being applied to mitigate condensate banking effect which occurs in gas condensate reservoirs; some of which have significant impact on the environment (subsurface and surface). Electrokinetic enhanced oil recovery (EEOR) increases oil displacement efficiency in conventional oil reservoirs while retaining beneficial properties to the environment. To successfully apply this technology on gas condensate reservoirs, the behavior of condensate droplets immersed in brine under the influence of electric current need to be understood. A laboratory experiment was designed to capture the effect of electrical current on interfacial tension and droplet movement. Pendant drop tensiometry was used to obtain the interfacial tension, while force analysis was used to analyze the effect of the electrical current on droplet trajectory. Salinity (0–23 ppt) and electric voltage (0–46.5 V) were the main variables during the entire experiment. Results from the experiment reveal an increase in IFT as the voltage is increased, while the droplet trajectory was significantly altered with an increase in voltage. This study concludes that the interfacial tension increases progressively with an increase in DC current, until its effect counteracts the benefit obtained from the preferential movement of condensate droplet.
Funder
Petroleum Technology Development Fund
Publisher
Springer Science and Business Media LLC
Subject
General Energy,Geotechnical Engineering and Engineering Geology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献