Laboratory study of plugging mechanism and seal integrity in fractured formations using a new blend of lost circulation materials

Author:

Elahifar BehzadORCID,Hosseini ErfanORCID

Abstract

AbstractThe problem of lost circulation occurred long during the drilling operation. Through induced and natural fractures, huge drilling fluid losses lead to higher operating expenses during the drilling. Historically, this problem was addressed with the help of the Lost Circulation Materials (LCMs). These materials are added to the drilling fluid to seal the fractures and increase fracture initiation or propagation pressure. Therefore, understanding the mechanisms of fracture sealing and the performance of the lost circulation materials is critical if the problem of lost circulation is to be mitigated effectively. Despite extensive advances in the last couple of decades, lost circulation materials used today still have disadvantages, such as damaging production zones, failing to seal large fractures, or plugging drilling tools. Here, we propose a new blend of smart expandable lost circulation material (LCM) to remotely control the expanding force and functionality of the injected LCM. This paper aimed to assess the performance of the selected LCMs (Mica, Wheat Straw, Oak Shell, and Sugarcane Bagasse Fiber or Canes) in water-based drilling fluids. The particle bridging of LCMs was investigated using particle bridging experiments in the laboratory. Moreover, we determined the particle size distribution of D50. The cell utilized in the sealing experiments had 1000- and 3000 micron fractures to mimic different size fractures in the formation. Fracture widths are predicted based on well-log data and adaptation of existing models in the desired oil field. The concentrations of LCMs in Mica, Wheat Straw, Oak Shell, and Sugarcane Bagasse Fiber (Canes) were (25, 50, and 80 ppb), (1.5, 2, 2.5 ppb), (3, 6, and 10 ppb), and (1.5, 2, 2.5 ppb), respectively. The results indicate that a combination of LCMs outperforms individual LCMs. When used individually, Oak Shells performed the highest, followed by Mica and Sugarcane Bagasse Fiber mixtures. Also, the Wheat Straw blend served the weakest lost circulation treatments. Finally, the combination applied in this investigation successfully sealed fractures up to 3 mm in diameter in the targeted oil field, which traditional LCM would be unable to do. Due to the abundance and low cost of these materials in the study area, they can be used to ensure successful plugging. Graphical Abstract

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3