Severe wellbore instability in a complex lithology formation necessitating casing while drilling and continuous circulation system

Author:

Ashena R.ORCID,Elmgerbi A.,Rasouli V.,Ghalambor A.,Rabiei M.,Bahrami A.

Abstract

AbstractMost of drilling hole problems are attributed to wellbore stability issues which adversely cause excessive lost time and cost millions of dollars. The past drilling experiences in Kupal oilfield showed excessive mud losses, kick flows, tight holes and pipe stuck leading to repeated reaming, fishing and sidetracking. Most of the drilling-associated problems in this field occurred during drilling the 12 ¼-in. hole, which is across the non-reservoir Gachsaran formation (consisting of anhydrite, gypsum and marl with thin limestone layers). Mainly due to the lack of required formation evaluation data, no geomechanical studies of this formation have been conducted to date. In this work, first, we constructed a geomechanical model to investigate the root of the problems. This is a pioneer wellbore stability work for such a complex lithology formation which included finding the equations best-matching with core data and field observations. Finally, to overcome the field challenges and hole problems, the study proposes some field remedial actions. The results of the geomechanical modeling show that the pore pressure, shear and tensile failure gradients are greatly variable with the safe mud weight window becoming excessively narrow at some intervals. This accounts for the encountered wellbore stability issues as managing the mud weight in these situations requires several casing strings. To mitigate the extent of the problem, this study proposes the application of innovative drilling technologies including casing while drilling to eliminate the casing running time with potential reduction in drilling time, and continuous circulation system to prevent cuttings settling and kick flows during connections. These technologies are capable of elimination of the geomechanical part of the drilling delay (30% of the average 77 drilling days) per well.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3