An evaluation of the enhanced oil recovery potential of the xanthan gum and aquagel in a heavy oil reservoir in Trinidad

Author:

Coolman Tina,Alexander David,Maharaj Rean,Soroush Mohammad

Abstract

AbstractThe economy of Trinidad and Tobago which mainly relies on its energy sector is facing significant challenges due to declining crude oil production in a low commodity price environment. The need for enhanced oil recovery (EOR) methods to meet the current and future energy demands is urgent. Studies on the use of polymer flooding in Trinidad and Tobago are limited, especially in terms of necessary data concerning the characterization of the adsorption of polymer flooding chemicals such as xanthan gum and aquagel polymers on different soil types in Trinidad and the viscosity characteristics of the polymer flooding solutions which affect the key attributes of displacement and sweep efficiency that are needed to predict recovery efficiency and the potential use of these flooding agents in a particular well. Adsorption and viscosity experiments were conducted using xanthan gum and aquagel on three different soil types, namely sand, Valencia clay (high iron) and Longdenville clay (low iron). Xanthan gum exhibited the lowest adsorption capacity for Valencia clay but absorbed most on sand at concentrations above 1000 ppm and Longdenville clay below 1000 ppm. At concentrations below 250 ppm, all three soil-type absorbent materials exhibited similar adsorption capacities. Aquagel was more significantly absorbed on the three soil types compared to xanthan gum. The lowest adsorption capacity was observed for Valencia clay at concentration levels above 500 ppm; however, the clay had the highest adsorption capacity below this level. Sand had the highest adsorption capacity for aquagel at concentrations above 500 ppm while Longdenville clay was the lowest absorbent above 500 ppm. Generally, all three soil types had a similar adsorption capacity for xanthan gum at a concentration level of 250 ppm and for aquagel at a concentration level of 500 ppm. The results offered conclusive evidence demonstrating the importance that the pore structure characteristics of soil that may be present in oil wells on its adsorption characteristics and efficiency. Xanthan gum polymer concentration of 2000 ppm, 1000 ppm and 250 ppm showed viscosities of 125 cp, 63 cp and 42 cp, respectively. Aquagel polymer concentrations of 2000 ppm, 1000 ppm and 250 ppm showed viscosities of 63 cp, 42 cp and 21 cp, respectively. Aquagel polymer solutions were found to generally have lower viscosities than the xanthan gum polymer solutions at the same concentration. Adsorption and viscosity data for the xanthan gum and aquagel polymers were incorporated within CMG numerical simulation models to determine the technical feasibility of implementing a polymer flood in the selected EOR 44 located in the Oropouche field in the southwest peninsula of the island of Trinidad. Overall, aquagel polymer flood resulted in a higher oil recovery of 0.06 STB compared to the xanthan gum polymer flood, so the better EOR method would be aquagel polymer flood. Additionally, both cases of polymer flooding resulted in higher levels of oil recovery compared to CO2 injection and waterflooding and therefore polymer flooding will have greater impact on the EOR 44 well oil recovery.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3