Stability of approximating solutions to parametric bilevel vector equilibrium problems and applications
Author:
Funder
Bộ Giáo dục và Đào tạo
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Computational Mathematics
Link
http://link.springer.com/content/pdf/10.1007/s40314-019-0823-7.pdf
Reference39 articles.
1. Anh LQ, Hung NV (2018a) Stability of solution mappings for parametric bilevel vector equilibrium problems. Comput Appl Math 37:1537–1549
2. Anh LQ, Hung NV (2018b) Gap functions and Hausdorff continuity of solution mappings to parametric strong vector quasiequilibrium problems. J Ind Manag Optim 14:65–79
3. Anh LQ, Hung NV (2018c) Levitin-Polyak well-posedness for strong bilevel vector equilibrium problems and applications to traffic network problems with equilibrium constraints. Positivity 22:1223–1239
4. Anh LQ, Hung NV (2017) On the stability of solution mappings parametric generalized vector quasivariational inequality problems of the Minty type. Filomat 31:747–757
5. Anh LQ, Hung NV, Tam VM (2018a) Regularized gap functions and error bounds for generalized mixed strong vector quasiequilibrium problems. Comput Appl Math 37:5935–5950
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Optimal control of generalized multiobjective games with application to traffic networks modeling;Mathematische Nachrichten;2023-05-22
2. Well-posedness for bilevel vector equilibrium problems with variable domination structures;Open Mathematics;2023-01-01
3. Painlevé–Kuratowski convergence of the solution sets for controlled systems of fuzzy vector quasi-optimization problems with application to controlling traffic networks under uncertainty;Computational and Applied Mathematics;2021-01-24
4. Set-Valued Symmetric Generalized Strong Vector Quasi-Equilibrium Problems with Variable Ordering Structures;Mathematics;2020-09-17
5. Existence conditions for solutions of bilevel vector equilibrium problems with application to traffic network problems with equilibrium constraints;Positivity;2020-05-07
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3