Accelerated SVD-based initialization for nonnegative matrix factorization

Author:

Esposito FlaviaORCID,Atif Syed Muhammad,Gillis Nicolas

Abstract

AbstractNonnegative matrix factorization (NMF) is a popular dimensionality reduction technique. NMF is typically cast as a non-convex optimization problem solved via standard iterative schemes, such as coordinate descent methods. Hence the choice of the initialization for the variables is crucial as it will influence the factorization quality and the convergence speed. Different strategies have been proposed in the literature, the most popular ones rely on singular value decomposition (SVD). In particular, Atif et al. (Pattern Recognit Lett 122:53–59, 2019) have introduced a very efficient SVD-based initialization, namely NNSVD-LRC, that overcomes the drawbacks of previous methods, namely, it guarantees that (i) the error decreases as the factorization rank increases, (ii) the initial factors are sparse, and (iii) the computational cost is low. In this paper, we improve upon NNSVD-LRC by using the low-rank structure of the residual matrix; this allows us to obtain NMF initializations with similar quality to NNSVD-LRC (in terms of error and sparsity) while reducing the computational load. We evaluate our proposed solution over other NMF initializations on several real dense and sparse datasets.

Funder

Universita degli Studi di Bari Aldo Moro

Ministero dell’Universitàe della Ricerca

Università degli Studi di Bari Aldo Moro

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3