Abstract
Abstract
Background
The aim of this study was to further explore the role of caveolin-1 (Cav-1) related Akt/mTOR signaling pathway in blood brain barrier (BBB) dysfunction caused by NMDAR activation.
Methods
The cell localization of NMDAR GluN1 subunit and Cav-1 was observed on human brain microvascular HBEC-5i cells after immunofluorescence double staining. The transendothelial resistance (TEER) of BBB in vitro was measured by Millicell-ERS cell resistance meter. Sodium fluorescein (SF) was used to measure the permeability of BBB in vitro. A stable Cav-1-silenced HBEC-5i cell line was established by infecting the cells with a lentivirus encoding Cav-1 shRNA. The changes of the protein and mRNA of MMP9 and Occludin induced by NMDA were detected by Western blot (WB) and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR), respectively. The phosphorylated proteins of Cav-1, Akt, and mTOR were detected by WB.
Results
NMDAR GluN1 was expressed in the cytoplasm and part of the cell membrane of the HBEC-5i cell line. NMDAR activation decreased TEER and increased the SF of BBB in vitro. HBEC-5i cells incubated with NMDA enhanced the phosphorylation of Cav-1, Akt, and mTOR, also promoting the expression of MMP9 along with the degradation of Occludin. These effects could be reversed by pretreatment with NMDAR antagonist (MK801) or Cav-1 antagonist (Daidzein), or Akt antagonist (LY294002), respectively. Further silencing Cav-1 with LV-Cav-1-RNAi also played a similar protective effect.
Conclusion
Caveolin-1 (Cav-1) related Akt/mTOR signaling probably contributes to BBB dysfunction by activating NMDAR on human brain microvascular cells.
Funder
the Natural Science Foundation of Guangxi Province
the National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Neuroscience (miscellaneous),Cellular and Molecular Neuroscience,Neurology