From mixed to hybrid facies volcanic debris avalanche at Colima Volcano: sedimentology and numerical modeling as evidence of transport and emplacement mechanisms

Author:

Roverato MatteoORCID,Capra Lucia

Abstract

AbstractNumerous partial collapses of Colima Volcano have occurred in its history, accompanied by the emplacement of volcanic debris avalanche deposits (VDADs). The collapse that generated the Tonila VDAD (T-VDAD; ~ 1 km3; ~ 15Ka cal. BP) occurred during “wet” paleoclimatic conditions in a high humidity environment, and water within the volcanic edifice, which played a significant role in the volcano’s instability and avalanche transport. This study aims to provide new data on the processes involved in the transport and emplacement mechanisms of debris avalanches based on a detailed granulometric and microtextural characterization and numerical modeling. In general, T-VDAD exhibited massive dynamic behavior during its transport, without segregation process, although some variation of the grains-size occurs from proximal to distal reaches from the source. At microscopic level, evidence suggests particle–particle interactions of rapid, high-energy, high velocity collisional nature, promoting comminution, which increases the fines content with distance. The general high content of fine material into the T-VDAD, combined with a significant water content within the mass before the collapse, due to partial edifice saturation, may have contributed to enhance its mobility. The T-VDAD mobility is here tested with the Titan2d numerical model; results show important paleo-topography implications and that the Coulomb frictional model with basal friction angles similar to previously tested cases best fits the areal propagation of the T-VDAD, confirming that, despite the fluid content that enhanced downslope transformation, the flow still behaved as a homogeneous and incompressible continuum with energy dissipation concentrated within its base.

Funder

Consejo Nacional de Ciencia y Tecnología

Alma Mater Studiorum - Università di Bologna

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3