Abstract
Abstract
Desiccation is a common stress that bacteria face in the natural environment, and thus, they have developed a variety of protective mechanisms to mitigate the damage caused by water loss. The formation of biofilms and the accumulation of trehalose and sporulation are well-known strategies used by bacteria to survive desiccation. Other mechanisms, including intrinsically disordered proteins and the anti-glycation defence, have been mainly studied in eukaryotic cells, and their role in bacteria remains unclear. We have recently shown that the impairment of trehalose synthesis results in higher glucose availability, leading to the accumulation of acetyl phosphate and enhanced protein acetylation, which in turn stimulates protein aggregation. In the absence of trehalose synthesis, excess glucose may stimulate non-enzymatic glycosylation and the formation of advanced glycation end products (AGEs) bound to proteins. Therefore, we propose that trehalose may prevent protein damage, not only as a chemical chaperone but also as a metabolite that indirectly counteracts detrimental protein acetylation and glycation.
Publisher
Springer Science and Business Media LLC
Subject
Genetics,General Medicine
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献