Vulnerability assessment considering impact of future groundwater exploitation on coastal groundwater resources in northeastern Jeju Island, South Korea

Author:

Chang Sun WooORCID,Chung Il-Moon,Kim Min-Gyu,Yifru Bisrat Ayalew

Abstract

AbstractJeju Island is the largest island in South Korea. Recently, extensive groundwater abstraction has been reported from the shallow aquifer in the northeast region of the island. This study simulated the freshwater resources of the aquifer to estimate the sustainability of groundwater use on Jeju Island in terms of its vulnerability to seawater intrusion. Three-dimensional finite-difference numerical groundwater models were simulated using the MODFLOW-family code SEAWAT. Precise and recent groundwater level and multi-depth salinity data obtained from the study site were used for model calibration; the simulated results showed good agreement with the observed data. SEAWAT was used to delineate the current seawater-freshwater interface to quantitatively estimate the coastal fresh groundwater resources. Future stress scenarios were also simulated in response to increased pumping and various changes in the recharge. The results showed that current groundwater use in the coastal aquifer did not induce seawater intrusion in the coastal aquifer, but seawater intrusion will occur if the dry season continues for the next ten years. The vulnerability assessment based on the predicted groundwater levels and ion concentrations using numerical simulations suggests future vulnerability in the aquifer; therefore, continuous assessment and visualization of the aquifer sustainability is vital. Future projections by the integrated SEAWAT simulation and GALDIT assessment showed that an increase in groundwater pumping may escalate the vulnerability status of coastal groundwater resources from moderate to high in some areas of the study site, by inducing lateral seawater intrusion in deeper areas of the unconfined aquifer.

Funder

Ministry of Land, Infrastructure and Transport of the Korean government

Korea Environmental Industry and Technology Institute

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3