Attenuation of acid rock drainage by stimulating sulfur-reducing bacteria

Author:

Byl Thomas D.ORCID,Oniszczak Ronald,Fall Diarra,Byl Petra K.,Bradley Michael

Abstract

AbstractIron-sulfide minerals found in shale formations are stable under anaerobic conditions. However, in the presence of oxygen and water, acid-loving chemolithotrophic bacteria can transform the iron-sulfide minerals into a toxic solution of sulfuric acid and dissolved iron and minerals known as acid rock drainage (ARD). The objective of this study was to disrupt chemolithotrophic bacteria responsible for ARD using chemical treatments and to foster an environment favorable for competing microorganisms to attenuate the biologically induced ARD. Chemical treatments were injected into flow-through microcosms consisting of 501 g of pyrite-rich shale pieces inoculated with ARD bacteria. Three treatments were tested in the microcosms: (1) a sodium hydroxide-bleach mix, (2) a sodium lactate solution, and (3) a sodium lactate-soy infant formula mix. The effectiveness of the treatments was assessed by monitoring pH, dissolved iron, and other geochemical constituents in the discharge waters. The optimal treatment was a sequential injection of 1.5 g sodium hydroxide, followed by 0.75 g lactate and 1.5 g soy formula dissolved in 20 mL water. The pH of the discharge water rose to 6.0 within 10 days, dissolved iron concentrations dropped below 1 mg/L, the median alkalinity increased to 98 mg/L CaCO3, and sulfur-reducing and slime-producing bacteria populations were stimulated. The ARD attenuating benefits of this treatment were still evident after 231 days. Other treatments provided a number of ARD attenuating effects but were tempered by problems such as high phosphate concentrations, short longevity, or other shortcomings. The results of these laboratory microcosm experiments were promising for the attenuation of ARD. Additional investigations and careful selection of treatment methods will be needed for field application.

Funder

TN Dept of Transportation, U.S. Geological Survey

Publisher

Springer Science and Business Media LLC

Subject

Earth-Surface Processes,Geology,Pollution,Soil Science,Water Science and Technology,Environmental Chemistry,Global and Planetary Change

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3