Abstract
Abstract
Rare flavour-changing neutral-current transitions b → sμ+μ− probe higher energy scales than what is directly accessible at the LHC. Therefore, the presence of new physics in such transitions, as suggested by the present-day LHCb anomalies, would have a major impact on the motivation and planning of future high-energy colliders. The two most prominent options currently debated are a proton-proton collider at 100 TeV (FCC-hh) and a multi-TeV muon collider (MuC). In this work, we compare the discovery prospects at these colliders on benchmark new physics models indirectly detectable in b → sμ+μ− decays but beyond the reach of the high-pT searches at the HL-LHC. We consider a comprehensive set of scenarios: semileptonic contact interactions, Z′ from a gauged $$ \textrm{U}{(1)}_{B_3-{L}_{\mu }} $$
U
1
B
3
−
L
μ
and $$ \textrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} $$
U
1
L
μ
−
L
τ
, the scalar leptoquark S3, and the vector leptoquark U1. We find that a 3 TeV MuC has a sensitivity reach comparable to the one of the FCC-hh. However, for a heavy enough mediator, the new physics effects at a 3 TeV MuC are only observed indirectly via deviations in the highest energy bin, while the FCC-hh has a greater potential for the discovery of a resonance. Finally, to completely cover the parameter space suggested by the bsμμ anomalies, among the proposed future colliders, only a MuC of 10 TeV (or higher) can meet the challenge.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference200 articles.
1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
2. CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
3. LHCb collaboration, Test of lepton universality with B0 → K ∗0 ℓ+ ℓ− decays, JHEP 08 (2017) 055 [arXiv:1705.05802] [INSPIRE].
4. LHCb collaboration, Test of lepton universality in beauty-quark decays, Nature Phys. 18 (2022) 277 [arXiv:2103.11769] [INSPIRE].
5. L. Di Luzio and M. Nardecchia, What is the scale of new physics behind the B-flavour anomalies?, Eur. Phys. J. C 77 (2017) 536 [arXiv:1706.01868] [INSPIRE].
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献