Unveiling synergistic QTLs associated with slow wilting in soybean (Glycine max [L.] Merr.)

Author:

Kwon Hakyung,Kim Moon Young,Yang Xuefei,Lee Suk-HaORCID

Abstract

Abstract Key message A stable QTL qSW_Gm10 works with a novel locus, qSW_Gm01, in a synergistic manner for controlling slow-wilting traits at the early vegetative stage under drought stress in soybean. Abstract Drought is one of the major environmental factors which limits soybean yield. Slow wilting is a promising trait that can enhance drought resilience in soybean without additional production costs. Recently, a Korean soybean cultivar SS2-2 was reported to exhibit slow wilting at the early vegetative stages. To find genetic loci responsible for slow wilting, in this study, quantitative trait loci (QTL) analysis was conducted using a recombinant inbred line (RIL) population derived from crossing between Taekwangkong (fast-wilting) and SS2-2 (slow-wilting). Wilting score and leaf moisture content were evaluated at the early vegetative stages for three years. Using the ICIM-MET module, a novel QTL on Chr01, qSW_Gm01 was identified, together with a previously known QTL, qSW_Gm10. These two QTLs were found to work synergistically for slow wilting of the RILs under the water-restricted condition. Furthermore, the SNP markers from the SoySNP50K dataset, located within these QTLs, were associated with the wilting phenotype in 30 diverse soybean accessions. Two genes encoding protein kinase 1b and multidrug resistance-associated protein 4 were proposed as candidate genes for qSW_Gm01 and qSW_Gm10, respectively, based on a comprehensive examination of sequence variation and gene expression differences in the parental lines under drought conditions. These genes may play a role in slow wilting by optimally regulating stomatal aperture. Our findings provide promising genetic resources for improving drought resilience in soybean and give valuable insights into the genetic mechanisms governing slow wilting.

Funder

Rural Development Administration

Seoul National University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3