More than 1000 genotypes are required to derive robust relationships between yield, yield stability and physiological parameters: a computational study on wheat crop

Author:

Wang Tien-ChengORCID,Casadebaig PierreORCID,Chen Tsu-WeiORCID

Abstract

Abstract Key message Using in silico experiment in crop model, we identified different physiological regulations of yield and yield stability, as well as quantify the genotype and environment numbers required for analysing yield stability convincingly. Abstract Identifying target traits for breeding stable and high-yielded cultivars simultaneously is difficult due to limited knowledge of physiological mechanisms behind yield stability. Besides, there is no consensus about the adequacy of a stability index (SI) and the minimal number of environments and genotypes required for evaluating yield stability. We studied this question using the crop model APSIM-Wheat to simulate 9100 virtual genotypes grown under 9000 environments. By analysing the simulated data, we showed that the shape of phenotype distributions affected the correlation between SI and mean yield and the genotypic superiority measure (Pi) was least affected among 11 SI. Pi was used as index to demonstrate that more than 150 environments were required to estimate yield stability of a genotype convincingly and more than 1000 genotypes were necessary to evaluate the contribution of a physiological parameter to yield stability. Network analyses suggested that a physiological parameter contributed preferentially to yield or Pi. For example, soil water absorption efficiency and potential grain filling rate explained better the variations in yield than in Pi; while light extinction coefficient and radiation use efficiency were more correlated with Pi than with yield. The high number of genotypes and environments required for studying Pi highlight the necessity and potential of in silico experiments to better understand the mechanisms behind yield stability.

Funder

Deutsche Forschungsgemeinschaft

Humboldt-Universität zu Berlin

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Agronomy and Crop Science,General Medicine,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3