Abstract
AbstractDeep neural networks (DNNs) have recently showed remarkable performance in various computer vision tasks, including classification and segmentation of medical images. Deep ensembles (an aggregated prediction of multiple DNNs) were shown to improve a DNN’s performance in various classification tasks. Here we explore how deep ensembles perform in the image segmentation task, in particular, organ segmentations in CT (Computed Tomography) images. Ensembles of V-Nets were trained to segment multiple organs using several in-house and publicly available clinical studies. The ensembles segmentations were tested on images from a different set of studies, and the effects of ensemble size as well as other ensemble parameters were explored for various organs. Compared to single models, Deep Ensembles significantly improved the average segmentation accuracy, especially for those organs where the accuracy was lower. More importantly, Deep Ensembles strongly reduced occasional “catastrophic” segmentation failures characteristic of single models and variability of the segmentation accuracy from image to image. To quantify this we defined the “high risk images”: images for which at least one model produced an outlier metric (performed in the lower 5% percentile). These images comprised about 12% of the test images across all organs. Ensembles performed without outliers for 68%–100% of the “high risk images” depending on the performance metric used.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Reference42 articles.
1. B. Lakshminarayanan, A. Pritzel, C. Blundell, Simple and scalable predictive uncertainty estimation using deep ensembles, Advances in neural information processing systems 30 (2017).
2. L. Breiman, Bagging predictors, Machine learning 24 (2) (1996) 123–140.
3. R. E. Schapire, The strength of weak learnability, Machine learning 5 (2) (1990) 197–227.
4. L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.
5. X. Li, B. Aldridge, J. Rees, R. Fisher, Estimating the ground truth from multiple individual segmentations with application to skin lesion segmentation, in: Proc. Medical Image Understanding and Analysis Conference, UK, Vol. 1, 2010, pp. 101–106.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献