Efficient practical Byzantine consensus using random linear network coding

Author:

Braun MichaelORCID,Wiesmaier Alexander,Alnahawi Nouri

Abstract

AbstractUsing random linear network coding (RLNC) in asynchronous networks with one-to-many information flow has already been proven to be a valid approach to maximize the channel capacities. Message-based consensus protocols such as practical Byzantine fault tolerance (pBFT) adhere partially to said scenario. Protocol phases with many-to-many communication, however, still suffer from quadratic growth in the number of required transmissions to reach consensus. We show that an enhancement in the data transmission behavior in the quadratic phases is possible through combining RLNC with pBFT as one hybrid protocol. We present several experiments conducted on random network topologies. We conclude that using RLNC-based data transmission offers a significantly better performance under specific circumstances, which depend on the number of participating network nodes and the chosen coding parameters. Applying the same approach to other combinations of message-based consensus and network coding protocols promises not only a gain in performance, but may also improve robustness and security and open up new application scenarios for RLNC, e.g., running it on the application layer.

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3