Shed light on photosynthetic organisms: a physical perspective to correct light measurements

Author:

Walter AndreasORCID,Schöbel HaraldORCID

Abstract

AbstractThe requirements for novel and innovative production systems expedite research on light emitting diode-based illumination in a life science context. In course of these rapid developments, the scientific community is in need of a consensus regarding to the characterization and presentation of the applied lighting conditions. This publication aims to establish a basic understanding of photon physics and propose guidelines for the conclusive usage of light related quantities. To illustrate the challenges in data handling, six different light sources were measured and characterized. Furthermore, a stepwise conversion within and in-between physical systems is presented, and an opportunity to extract information from weak data sets is demonstrated. The proposed calculations indicated flexibility in data handling, but revealed partial inaccuracy for colored light emitting diodes with spectral power distribution maxima far-off 550 nm compared to spectrometer-based measurements and conversions. Furthermore, it could be shown, that when comparing light properties, the determination of photometric quantities is incorrect to describe lighting systems for photosynthetic organism and the usage of luxmeter or similar photometric sensors should be avoided. The presented guidelines shall support scientists in applying a consistent and precise characterization of their illumination regimes, tailored to their requirements to avoid ambiguous communication and the generation of incorrect and thus incomparable data based on wrong quantities and units, such as lumen or lux, in future research.

Funder

MCI Management Center Innsbruck – Internationale Hochschule GmbH

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Biochemistry,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3