Neutron scattering in photosynthesis research: recent advances and perspectives for testing crop plants

Author:

Nagy GergelyORCID,Garab GyőzőORCID

Abstract

AbstractThe photosynthetic performance of crop plants under a variety of environmental factors and stress conditions, at the fundamental level, depends largely on the organization and structural flexibility of thylakoid membranes. These highly organized membranes accommodate virtually all protein complexes and additional compounds carrying out the light reactions of photosynthesis. Most regulatory mechanisms fine-tuning the photosynthetic functions affect the organization of thylakoid membranes at different levels of the structural complexity. In order to monitor these reorganizations, non-invasive techniques are of special value. On the mesoscopic scale, small-angle neutron scattering (SANS) has been shown to deliver statistically and spatially averaged information on the periodic organization of the thylakoid membranes in vivo and/or, in isolated thylakoids, under physiologically relevant conditions, without fixation or staining. More importantly, SANS investigations have revealed rapid reversible reorganizations on the timescale of several seconds and minutes. In this paper, we give a short introduction into the basics of SANS technique, advantages and limitations, and briefly overview recent advances and potential applications of this technique in the physiology and biotechnology of crop plants. We also discuss future perspectives of neutron crystallography and different neutron scattering techniques, which are anticipated to become more accessible and of more use in photosynthesis research at new facilities with higher fluxes and innovative instrumentation.

Publisher

Springer Science and Business Media LLC

Subject

Cell Biology,Plant Science,Biochemistry,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3