Learning-based classification of multispectral images for deterioration mapping of historic structures

Author:

Adamopoulos EfstathiosORCID

Abstract

AbstractThe conservation of historic structures requires detailed knowledge of their state of preservation. Documentation of deterioration makes it possible to identify risk factors and interpret weathering mechanisms. It is usually performed using non-destructive methods such as mapping of surface features. The automated mapping of deterioration is a direction not often explored, especially when the investigated architectural surfaces present a multitude of deterioration forms and consist of heterogeneous materials, which significantly complicates the generation of thematic decay maps. This work combines reflectance imaging and supervised segmentation, based on machine learning methods, to automatically segment deterioration patterns on multispectral image composites, using a weathered historic fortification as a case study. Several spectral band combinations and image classification techniques (regression, decision tree, and ensemble learning algorithmic implementations) are evaluated to propose an accurate approach. The automated thematic mapping facilitates the spatial and semantic description of the deterioration patterns. Furthermore, the utilization of low-cost photographic equipment and easily operable digital image processing software adds to the practicality and agility of the presented methodology.

Funder

H2020 Marie Skłodowska-Curie Actions

Compagnia di San Paolo

Università degli Studi di Torino

Publisher

Springer Science and Business Media LLC

Subject

Energy Engineering and Power Technology,Fuel Technology

Reference71 articles.

1. Fitzner B, Heinrichs K (2001) Damage diagnosis on stone monuments–weathering forms, damage categories and damage indices. Acta Univ Carol Geol 45(1):12–13

2. Inkpen R, Duane B, Burdett J, Yates T (2008) Assessing stone degradation using an integrated database and geographical information system (GIS). Environ Geol 56:789–801. https://doi.org/10.1007/s00254-008-1309-x

3. Brunetaud X, Luca LD, Janvier-Badosa S, Beck K, Al-Mukhtar M (2012) Application of digital techniques in monument preservation. Eur J Environ Civ Eng 16(5):543–556. https://doi.org/10.1080/19648189.2012.676365

4. Janvier-Badosa S, Beck K, Brunetaud X, Al-Mukhtar M (2013) Historical study of Chambord Castle: basis for establishing the monument health record. Int J Archit Herit 7(3):247–260. https://doi.org/10.1080/15583058.2011.634959

5. Mileto C, Vegas F, Lerma JL (2015) Multidisciplinary studies, crossreading and transversal use of thermography: the Castle of Monzón (Huesca) as a case study. In: Rodríguez-Navarro P (ed) Defensive architecture of the mediterranean. Editorial Universitat Politècnica de València, Valencia, pp 405–412

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3