BRAIDED COMMUTATIVE ALGEBRAS OVER QUANTIZED ENVELOPING ALGEBRAS

Author:

LAUGWITZ ROBERT,WALTON CHELSEA

Abstract

AbstractWe produce braided commutative algebras in braided monoidal categories by generalizing Davydov’s full center construction of commutative algebras in centers of monoidal categories. Namely, we build braided commutative algebras in relative monoidal centers $$ {\mathcal{Z}}_{\mathrm{\mathcal{B}}}\left(\mathcal{C}\right) $$ Z C from algebras in ℬ-central monoidal categories $$ \mathcal{C} $$ C , where ℬ is an arbitrary braided monoidal category; Davydov’s (and previous works of others) take place in the special case when ℬ is the category of vector spaces $$ {\mathbf{Vect}}_{\mathbbm{K}} $$ Vect K over a field $$ \mathbbm{K} $$ K . Since key examples of relative monoidal centers are suitable representation categories of quantized enveloping algebras, we supply braided commutative module algebras over such quantum groups. One application of our work is that we produce Morita invariants for algebras in ℬ-central monoidal categories. Moreover, for a large class of ℬ-central monoidal categories, our braided commutative algebras arise as a braided version of centralizer algebras. This generalizes the fact that centers of algebras in $$ {\mathbf{Vect}}_{\mathbbm{K}} $$ Vect K serve as Morita invariants. Many examples are provided throughout.

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3