Abstract
AbstractA radiotherapy bolus is a tissue-equivalent material placed on the skin to adjust the surface dose of megavoltage X-ray beams used for treatment. In this study, the dosimetric properties of two 3D-printed filament materials, polylactic acid (PLA) and thermoplastic polyether urethane (TPU), used as radiotherapy boluses, were investigated. The dosimetric properties of PLA and TPU were compared with those of several conventional bolus materials and RMI457 Solid Water. Percentage depth-dose (PDD) measurements in the build-up region were performed for all materials using 6 and 10 MV photon treatment beams on Varian linear accelerators. The results showed that the differences in the PDDs of the 3D-printed materials from the RMI457 Solid Water were within 3%, whereas those of the dental wax and SuperFlab gel materials were within 5%. This indicates that PLA and TPU 3D-printed materials are suitable radiotherapy bolus materials.
Funder
Sydney Cancer Institute, NSW, Australia
University of Sydney
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging,Physical Therapy, Sports Therapy and Rehabilitation,General Medicine,Radiation
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献