Abstract
Abstract
The S-matrix bootstrap maps out the space of S-matrices allowed by analyticity, crossing, unitarity, and other constraints. For the 2 → 2 scattering matrix S2→2 such space is an infinite dimensional convex space whose boundary can be determined by maximizing linear functionals. On the boundary interesting theories can be found, many times at vertices of the space. Here we consider 3 + 1 dimensional theories and focus on the equivalent dual convex minimization problem that provides strict upper bounds for the regularized primal problem and has interesting practical and physical advantages over the primal problem. Its variables are dual partial waves kℓ(s) that are free variables, namely they do not have to obey any crossing, unitarity or other constraints. Nevertheless they are directly related to the partial waves fℓ(s), for which all crossing, unitarity and symmetry properties result from the minimization. Numerically, it requires only a few dual partial waves, much as one wants to possibly match experimental results. We consider the case of scalar fields which is related to pion physics.
Publisher
Springer Science and Business Media LLC
Subject
Nuclear and High Energy Physics
Reference41 articles.
1. R. J. Eden, P. V. Landshoff, D. I. Olive and J. C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).
2. G. Chew, The Analytic S Matrix: A Basis for Nuclear Democracy, W.A. Benjamin, San Francisco U.S.A. (1966).
3. M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix bootstrap. Part I: QFT in AdS, JHEP 11 (2017) 133 [arXiv:1607.06109] [INSPIRE].
4. M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix bootstrap II: two dimensional amplitudes, JHEP 11 (2017) 143 [arXiv:1607.06110] [INSPIRE].
5. M. F. Paulos, J. Penedones, J. Toledo, B. C. van Rees and P. Vieira, The S-matrix bootstrap. Part III: higher dimensional amplitudes, JHEP 12 (2019) 040 [arXiv:1708.06765] [INSPIRE].
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献