Random field ϕ3 model and Parisi-Sourlas supersymmetry

Author:

Kaviraj Apratim,Trevisani Emilio

Abstract

Abstract We use the RG framework set up in [1] to explore the ϕ3 theory with a random field interaction. According to the Parisi-Sourlas conjecture this theory admits a fixed point with emergent supersymmetry which is related to the pure Lee-Yang CFT in two less dimensions. We study the model using replica trick and Cardy variables in d = 8 − ϵ where the RG flow is perturbative. Allowed perturbations are singlets under the Sn symmetry that permutes the n replicas. These are decomposed into operators with different scaling dimensions: the lowest dimensional part, ‘leader’, controls the RG flow in the IR; the other operators, ‘followers’, can be neglected. The leaders are classified into: susy-writable, susy-null and non-susy-writable according to their mixing properties. We construct low lying leaders and compute the anomalous dimensions of a number of them. We argue that there is no operator that can destabilize the SUSY RG flow in d ≤ 8. This agrees with the well known numerical result for critical exponents of Branched Polymers (which are in the same universality class as the random field ϕ3 model) that match the ones of the pure Lee-Yang fixed point according to dimensional reduction in all 2 ≤ d ≤ 8. Hence this is a second strong check of the RG framework that was previously shown to correctly predict loss of dimensional reduction in random field Ising model.

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fluids in Random Media and Dimensional Augmentation;Physical Review Letters;2023-10-03

2. Renormalization group for measurement and entanglement phase transitions;Physical Review B;2023-09-12

3. A Celestial route to AdS bulk locality;Journal of High Energy Physics;2023-08-18

4. Open Problems and Future Directions;SpringerBriefs in Physics;2023

5. History, Basics, Experiments and Simulations;SpringerBriefs in Physics;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3