Advances in Diffusion Barrier Coatings for High-Temperature Applications

Author:

Narita Toshio,Kato Yasumichi,Narita Takuro,Ara Mayumi

Abstract

AbstractDiffusion barrier coating (DBC) systems on heat resistant alloys consist of a multi-layer structure: an outer Al-reservoir layer and an inner diffusion barrier layer (DBL). The outer Al-reservoir layer forms a protective Al2O3 scale and DBL acts as a barrier layer against alloy interdiffusion. Three kinds of DBL were developed: Re on Ni-based superalloys; W on stainless steels; and Cr on Ni–Cr alloys. It was found that DBC systems have excellent mechanical properties (creep and fatigue), improving alloy substrate performance, and enhance the anti-exfoliation properties of YSZ in thermal barrier coatings (TBC) in addition to providing excellent oxidation resistance. At temperatures higher than 1300 °C, however, the DBC design based on kinetics (diffusion) is insufficient to form and maintain a protective Al2O3 scale. In this case a self-maintaining coating (SMC) system designed on the basis of thermodynamics (phase stability) is required. The SMC system formed on Nb–Hf (C-103) alloy consists of a multi-layer structure: an outer Re (Al, Si)1.8 and inner NbSi2 layers, plus a transient Nb5Si3 layers formed during oxidation. At temperatures higher than 1300 °C the Al2O3 can be formed by changing the Al/Si ratio in the Re (Al, Si)1.8 in which Si was supplied from the decomposition reaction of NbSi2 to Si + Nb5Si3 during selective oxidation of Al. It is proposed that coating alloys should be designed for considering not only high temperature oxidation, but also alloy substrate mechanical properties and anti-exfoliation of oxide scales, based on both kinetic principles (DBC system) and thermodynamics (SMC system).

Publisher

Springer Science and Business Media LLC

Reference11 articles.

1. T. Narita, Japanese Journal of High Temperature Materials 28, 2002 (135).

2. T. Narita, T. Izumi, T. Nishimoto, Y. Shibata, K. Z. Thoshin, and S. Hayashi, Materials Science Forum 522–523, 2006 (1).

3. Y. Matsumura, M. Fukumoto, S. Hayashi, A. Kasama, I. Iwanaga, R. Tanaka, and T. Narita, Oxidation of Metals 61, 2004 (105).

4. T. Izumi, T. Yoshioka, and T. Narita, Journal of the Japan Institute of Metals 72, 2008 (728).

5. M. Sakata, S. Hayashi, and T. Narita, Materials 47, 2006 (99).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3